
)II· . \

ll ' , I

LBL-12313
c.~

I'Ttl Lawrence Berkeley Laboratory
li:l UNIVERSITY OF CALIFORNIA

Engineering & Technical
Services Division

f:3EFII\ELEY Lr~UUI"i'/ITC>r?Y

·.AUG 31 EJ81

LIBRAHY AND
DOCUMENTS SECTION

To be presented at the IEEE Conference, Applications of Mi.ni
and Microcomputers, San Francisco, CA, November 9-12, 1981

USE OF EMBEDDED MICROCOMPUTERS IN SYSTEM DEBUGGING AND
MAINTENANCE

John Meng and Dan Weaver

February 1981

TWO-WEEK LOAN COPY

This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Dioision, Ext. 6782

Prepared for the U.S. Department of Energy under Contract W-7 405-ENG-48

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBL-12313

USE OF EMBEDDED MICROCOMPUTERS IN SYSTEM DEBUGGING AND MAINTENANCE

John Meng and Dan Weaver

Lawrence Berkeley Laboratory
University of California

Berkeley, California USA 94720

Abstract

Systems which use embedded microcomputers to
perform control functions can often double as
flexible debugging and maintenance devices by
switching in high level language ROMS. This paper
describes systems in which such benefits are suc
cessfully exploited.

Introduction

For several years we have been developing
sma 11 sys terns using microcomputers as the primary
system "intelligence". These systems are all
similar in that they are dedicated to a simple
combination of mutually exclusive functions in a
slow or non-critical time sequence. After some
early experimentation with tailor-made languages,
.we finally settled on using BASIC to implement
the programs used in these systems. In general,
they all have mechanical devices to drive (step
ping motors or DC motors) and perform sundry other
tasks such as reading pushbuttons, turning lamps
on or off, and communicating with an operator.

Early in the development of these systems,
the value of having a conversational interactive
device through which we can probe and manipulate
system elements became apparent. Critically
valuable test loops can be constructed and exe
cuted in minutes, often saving hours of tedious
work with an oscilloscope and "lashed up" test
circuits.

We have since moved on to much larger systems.
The latest is MIDAS (Modular Interactive Data
Analysis System). The MIDAS prototype, consist
ing of a subset of the final system, is currently
undergoing an evaluative testing program . Micro
computers pervade MIDAS as well as its many ap
pendages, and these embedded micros serve as
examples of the value inherent in the use of a
high-level conversational language during debugg
ing and maintenance phases.

MIDAS is a pyramid of processors (Fig. 1).
At the peak is a single elaborate processor used
to converse interactively with an array of users.
In the midsection of the pyramid are arrays of
mini-computer central processors--"super-micros"--

operating in parallel and used to sort through a
massive data base existing in an array of magnetic
tapes, multimegabyte memories and disc packs.
Microcomputers riddle the structure, serving as
low speed switches and simple-minded decision
makers in everything from the handling of mechani
cal sequencing in the disc and tape cpntrollers
through handshaking with users off the peak of
the pyramid.

Figure 1. MIDAS

}
INTERACTIVE
USER STATIONS

Embedded micros access the system at its most
intimate level; for example, at the mechanical
functioning of disc and magnetic tape drives.
They also have privileged access to most data
storage and data passageways. For example,

micros control settings of high-speed data path
way switches and physically carry out commanded
switching of memory subsystems from one" "super
micro" to another. Most places where the system
is capable of "bending;" the joints where flexi
bility is effected, are under the direct super
vision and control of microcomputers. In address
ing both initial debugging and subsequent mainte
nance in the system, we are using the embedded
microcomputers as frontline interfaces between
engineering and/or maintenance personnel and many
critical states and flows within the structure.
To enhance this communication we have turned away
from the computer-on-a-chip micro in favor of a
slightly more elaborate configuration capable of
executing short routines written in a high level
language (BASIC).

Economics of the Expanded Micro

Microcomputers are used freely throughout
MIDAS. Effectively, .the microcomputers have
become just .another component. They ar;e plugged
into the system for reasons not philosophically
dissimilar to those used to select other lngic
components, such as integrated circuits. Since
we desire to incorporate these devices into our
system based on their efficient usefulness rather
than based on their cost, it is inherently vital
that the'1r individual and aggregate cost not make
the system prohibitively expensive. Some addi
tional expense is ju~tifiable on the basis of
savings in initially making the system operational
(debugging) and on the basis of savings in
reduced down-time and in reduced numbers of
maintenance hours required, to repair the unit
·following component failures (maintenance).

Specifically, tradjtional component-level
maintenance involves the temporary electrical
connection of a monitoring device and/or a tester
into suspect regions of th~ system (Fig. 2). The
failure mode is then,hopefully reproduced by some
operational acts and/or tester functions, often
necessarily involving the entire pyramid, and the
results are displayed in such a manner that the
flawed logic becomes visible, allowing defective
components to be replaced. Under ideal condi
tions, these procedures produce results quickly
and efficiently. Tht; assumption implicit in the
"ideal conditions" are:

(1) The failure or flaw is explicit enough to be
localized to the correct module and to the cor
rect part of the module by its symptoms.

(2) The module under suspicion is physically
easily accessible to the probes of test and
monitoring equipment.

(3) The failure is "hard." That is, it is
reproducible by a simple duplication of some part
of whatever procedure brought it to attention
initially.

As any experienced maintenance person can
verify, the fulfillment of all these assumptions
for any particular problem is rarely realized.

2

LBL-12313

Memorable problems requ1r1ng the uncanny deduc
tive powers of a modern-day Sherlock Holmes seem
remarkably common. This becomes more the case as
the system becomes more campi ex.

Figure 2. Traditional component-level maintenance

figurE.:.]_. The embedded micro is connected to a
terminal to allow maintenance personnel access to
selected system components.

Micros embedded in the system can help in the
realization of these ideal assumptions, signifi
cantly reducing the costs associated with debug
ging and maintenance. Specifically, each micro
is local to a part of the system. When loaded
with a BASIC interpreter, it becomes a subsystem
independent of the remaining system. The disc
controller, for example, contains micros to handle
error correction. The disc controller contains
three data ports. Each port contains an error
correction micro. Loaded with BASIC, any one of
the three micros can exercise and diagnose fail
ures in its own port while the remaining two ports
are operating normally. Exercising subsystems
independently adds a weapon to the diagnostic
arsenal of the maintenance or debugging person.
The ability to diagnose and localize failures is
greatly enhanced by being able to exercise spe
cific parts of the system independent of adjacent
parts.

Embedded micros have "wired-in" access to
intimate connections within the system. By con
necting a single cable from an input/output port

to a terminal, the person doing the debugging
gains conversational access to the system's inti
mate innards. Local loops can be composed and
run on the spot to handle many types of testing.

Finally, the embedded micro can often help in
finding "soft" failures. Local loops can be set
up and left running in attempts to pinpoint such
intermittent malfunctions, while the remaining
system is left to run normally. Embedded micros
capable of running in conversational modes with
maintenance personnel provide convenient, rapid
access to many internal parts of the system.
They also often allow the major parts of the
system to function while a local subsystem is
being repaired. Savings both in the time required
to repair subsystems and in the time during which
the entire system would normally have to be dedi
cated to maintenance justify the expense of ex
panding the capabilities of embedded micro
computers.

Embedded Micros as Maintenance Devices

Our embedded micro·s are dedicated to system
operations under normal circumstances. They
incorporate memory-mapped connections and standard
input-output connections to various gates and
control·signals (Fig. 3). When problems appear,
the states of various .control signals become
important to the maintenance per·son. It is also
often necessary to allow him to arbitrarily
control the various gates and control lines to
which the micro has access. One approach to
accomplishing this is to assembly-language program
the micro with dedicated maintenance aids. By
invoking such aids either with a terminal or with
a switch-box/ 1 ight-array combination, access is
gained to prespecified system values and func
tions. A problem with this approach is the in
herent lack of flexibility resulting from being
required to "pre-guess" everything required for
maintenance communications and to "pre-program"
these requirements into the micro when the system
is first assembled.

Most micro systems have debugging software
available which allows maintenance personnel to
load and run short routines from a terminal.
Maintenance personnel familiar with microcoding
techniques may find this valuable. Our approach,
however, has been to remove the system's execution
ROM's, the program used during normal operations,
and to replace them with ROM's containing a BASIC
interpreter. Maintenance routines are then loaded
as BASIC source programs either from a terminal ~s
keyboard or from a library on cassette tape. The
programs are, for the most part, universally read
able and can be readily modified to help entrap
perverse failures thought up by Mother Nature's
gremlins.

The embedded micro has not replaced the oscil
loscope or logic analyzer as a maintenance tool.
However, it can significantly enhance the use of
these valuable tools by printing logic states at
various crucial points without requiring direct

3

LBL-12313

physical access. It can also be programmed to
repetitively exercise states over which it has
control, providing signals to be viewed with the
oscilloscope or logic analyzer.

Figure 4 shows the micros in the MIDAS disc
controller. The main control micro has access to
head-select and drive-select lines and to head
stepping signals. This micro also monitors both
the seCtor number being counted from pulses from
the drive and the sector number read from the
data track. It is the device which begins a read
or write operation when the correct position is
reached on the disc. Malfunctions in the drive
itself or in its self-contained electronics are
easily probed by swapping the BASIC EPROM set
into the main control micro. Positioning and
read or write commands can be issued in loops to
provide signals for viewing on oscilloscope or
logic analyzer. Simple programs can be entered
and run for checking the electromechanical func
tions of the mechanism.

TO SYSTEM

MAIN CONTROL
MICRO

DISC
DRIVE

SUPER MINI DATA PORTS
TO DATA PATHWAY SWITCHES

Figure 4. MIDAS disc controller

The ECC micro normally is invoked only when
correctable data errors are detected. It has
access to the data in data buffers as well as to
ECC data. If problems arise in this area, BASIC
programs can be loaded to run diagnostics on all
the data storage in fhe controller. Loops can be
run to provide test signals for viewing on oscil
loscope or logic analyzer. The file control micro
controls the disc connection, via ports I, II and
III, to the remainder of MIDAS. It also issues
global commands to the main control micro. Prob
lems in these areas can be diagnosed and solved
using techniques analogous to those associated
with the other two micros.

Thus we see that each micro has its discrete
region of responsibility and control. Using each
as a debugging tool allows us to treat each dis
crete region independently. We do not have to
involve the entire pyramid in a debugging opera
tion on one of its internal components. We could

digress into a description of each of MIDAS's
many embedded micros. However, the debugging
and/or maintenance value of 111ost are siniilar.
Each allows us to divide, communicate with, and
eventually to conquer problems in an efficient
manner.

Another example, one with unique features, is
the "conductor:" the subsystem which switches
memories from "super-micro" to "super-micro."
The controlling micro has no mechanical device to
control. (Figure 5) This subsystem is labeled
the "conductor" because it is also responsible
for directing pre-orchestrated flows of data
through the system processors. The conductor's
players are FIFO's (First In, First Out, stacks)
loaded with numbers (control bytes) representing
memories. Each byte turns on gates connecting a
processor to a memory. A pair of FIFO's is
dedicated to each proc~ssor. One holds bytes
corresponding to memories containing data to be
processed. The other holds memory numbers cor
responding to data already processed. The control
micro passes numbers from "processed data" FIFO's
into "ready to be processed data" FIFO's. Lists
of numbers are initi~lly passed to the control
micro from a processor at the next higher level
in the pyramid (the "Secondary CPU").

COHTIIOI.
MINICOMPUTlR

jiiCOMOMYCI'tJJ

DIJAl fifO COHTJI:Ol Ma~Tlll

COfiTROiliNU
TO II£MOI;t'f.
NllCTGATU

Figure 5. The MIDAS conductor directs data flows
through the system processors.

The control micro, in the event of memory or
processor failure, can be loaded with a BASIC
interpreter, giving the service person access to
FIFO controls. The maintenance person can then
connect any memory to any processor for checkout
and debugging. In this case, the embedded micro
is not doing the actual checkout. It is simply
giving the service person a convenient handle for
manipulating parts of the system to expedite
maintenance and checkout, but not requiring him
to use remote elements of the system for his
manipulations.

In summary, the precise use to which the
embedded micro can best be put to expedite main
tenance dependends on the position of the micro
and the structure and natur~ of the subsystem
into which it is ~mbedded. However, in general
it allows the exclusion of much uninteresting,
functioning hardware from consideration during a

4

LBL-12313

maintenance pass. It also expedites communica
tions between the hardware of interest and the
person working on the hardware.

Developing a Cost Effective Micro

As was discussed earlier, we felt it desirable
to enhance our embedded micros to where they would
be able to run BASIC when necessitated by mainte
nance requirements necessitated this. On the
other hand, over-enhancement could make the cost,
both in money and phys i ca 1 space, a prohibitive
factor in many systems. The unit we have built
and are using requires less than 2-l/2" x 5" of
wire-wrap board space and costs about $100 to
build. (See Fig. 6}. It is a reduced version of
a commercially available 16-bit microprocessor
system.

CONNECTOR FOR
PORTABLE TERMINAL

2Kx8BIT
RAM

I'
I

--------------------------------------~

)

ADDITIONAL 1/0 FOR
CONNECTION TO HOST SYSTEM

)

MAPPED 1/0 FOR
CONNECTION TO HOST SYSTEM

Figure 6. An embedded microcomputer module for
use in MIDAS. BASIC is run in the micro by
exchanging EPROMS.

Two versions of the microprocessor are
produced by the manufacturer. One is a 64-pin
device. The other is a 40-pin device. The major
difference between the two is s{xteen pins dedi
cated to the data bus on the 64-pin device versus
8 on the 40-pin chip. In order to make the module
as small as possible physically, we chose the
40-pin device. The various problems we encoun
tered as a result of this choice are discussed at
length in Reference 6.

When running BASIC, the micro has about 1000
bytes of RAM available for source statements and
variables. Figure 7 is a BASIC program (a memory
diagnostic) which uses most of the available RAM.

I
<)

I<

It is included to give the reader a feel for the
size of the program which can be run.

10
20
30
33
40
50
55
56
60
70
BO
90
100
110
120
130
140
150
200
210
215
220
225
230
250
1000
1010
1015
1020
1030
1040
1050
1060
1010
lOBO
2000

SIZ

GOSUB 1000
BASE 0120H:: CRF[0].05FFH:: BASE 02AOH:: CRF[6].03EH:: CRB(6]ol:: CRBf7]•1
GO SUB 1000:: BASE 0120H:: CRF(O].OIFFH:: GOSOB 1000
BAS£ Ol20H:: CRF[0].05FFH:: GOSUB 1000
OAT.OIBOH:: GOSUB lOBO
INPUT "AOORW ";OAT:: If 0Ah999999 THEN GOTO 200
If 0Ah99999 THEN GOTO 220
If 0Ah65535 THEN GOTO 110
CH0.057BH:: OAT. LNOT (OAT):: GOSUB 1010
INPUT "DATA ";OAT:: If OAT>65535 THEN GOTO 110
OAT• LNOT (OAT):: Cll0.0570H:: GOSUB 1010
INPUT OAT:: If OAT>65535 THEN GOTO 110
OAT• LNOT (OAT):: Cll0.057EH:: GOSUB 1010:: GOTO 90

~:~~T L~~r"'~A;~~~T i~o~~5~~~~~5~~u:H~~~~OTO 50
GOSUB 1040:: OAT· LNOT (OAT):: PRINT IOAT;OAT
INPUT OAT:: If 0AT>65535 THEN GOTO 50
CH0.0577H:: OAT·-1:: GOSUB 1010:: GOTO 130
INPUT "STRT AllOR ";OAT.
CHOo057BH:: OAT • LNOT (OAT):: GOSUB 1010:: CH0..077FH:: GOSUB 1010:: GOTO 220
CH0.057FH:: GO SUB 1010
INPUT "REG ";OAT:: If OAT>4095 THEN GOTO 50
GOSUB 1080:: GOSUB 1040
PRINT I LNOT (OAT); LNOT OAT
GOTO 220

BASE 02AOH:: CRB(Bl.O:: CRB(Bl·1:: RETURN
BASE 02AOH:: CRB(6 •I:: CRB(7 ol:: CRF(6]·03EH:: BASE Ol20H
CRF[0].057FH:: GOSUB 1000
BASE 0120H:: CRF(O].OAT:: BASE 02AOH:: CRB(7]..0:: GOlUB 1000
C~B(7[•1:: BASE 0120H:: CRF(O]oCMO:: GOSUB 1000:: RETURN
BASE 0120H:: CRBf-16].1:: CRB[-1l.O
BASE 02AOH:: CRF 6].03EH:: CRB(6 .o:: CRB[7].0:: CRB(B].O
~~~~R~I2011:: OAT·CRF[O]:: BASE 02AOII:: CRB(B]-1:: CRB[7].1:: CRB(6]·1 

CRF(6].03011:: BAS£ 0120H:: CRF[O]. LNOT OAT:: GOSUB 1000:: RETURN 
INPUT OAT:: CHOo056FH:: GOSUB.1010:: GOTO 2000 

PRGH:0390H BYTES 
VARS:04H BYTlS 
FREE :072H BYTES 

Figure 7. Memory diagnostic program showing 
approximate size of program which can be loaded 
and run in the embedded micro. 

Conclusion 

Embedded microcomputers can be enhanced suf
ficiently to be able to run BASIC during mainte
nance and debugging operations. The enhancement 
can be minimal enough to keep the cost in both 
money and physical space allocation within accept
able bounds. 

The value of being able to execute BASIC in 
embedded microcomputers dut· i ng maintenance and 
debugging operations is the ease with which the 
maintenance person can gain access to and com
municate with vital signals in the system. The 
embedded micro allows system maintenance to be 
carried on within discrete subsystems without the 
necessity of involving other major parts of the 
system. 

Acknowledgment 

This work was supported by the Director's 
Office of Energy Research, Office of High Energy 
and Nuclear Physics, Division of Nuclear Physics 
and by Nuclear Sciences of Basic Energy Sciences 
Program of the U.S. Department of Energy under 
Contract W-7405-ENG-48. 

References 

On MIDAS: 

1. Maples, Creve C., "A Specialized, Multi-User 
Computer Facility for the High-Speed, Inter
active Processing of Experimental Data." 

5 

LBL-12313 

Proceedings of Computerized Data Acquisition 
Systems in Particle and Nuclear Physics 
Conference, Santa Fe, NM, May 14-17, 1g79, 

2. Maples, Creve C., Proposal for a High Speed, 
Interactive Facility for the Reduction and 
Analysis of Scientific Data. Presented at 
Asilomar, CA, meeting of the American Physical 
Society, Nov. 1-3, 1978. LBL-7196 (1978), 
Lawrence Berkeley Laboratory, Berkeley, CA 
94720. 

References 3-5 presented at Topical Conference on 
Computerized Data Acquisition in Particle and 
Nuclear Physics, Oak Ridge, TN, May 28-30, 1981. 
All appear in Proceedings of the conference. 

3. Maples, C., Rathbun, W., Meng, J., and 
Weaver, D., "A Fast Time-Sliced Multiple Data 
Bus Structure for Overlapping Data Transfers 
and Transformations. 

4. Maples, C., Rathbun, W., Weaver, and Meng, J. 
"The Design of MIDAS -A Modular Interactive 
Data Analysis System." 

5. Maples, C., Weaver, D., Rathbun, W., and 
Meng, J., "The Utilization of Parallel 
Processors in a Data Analysis Environment." 

6. Meng, J., "Power Basic and the 9980/9981. 
ITMIX 1981 National Symposium, New Orleans, 
LA, March 8-11, 1981. LBL-12235, Lawrence 
Berkeley Laboratory, Berkeley, CA 94720. 

7. Handy, Jim, "Embedded Diagnostics Utilize 
Excess ROM Capacity. Compute~ Design, May 
1981, pp. 114-115. 



( 
ll 


